HORAS

Tabe ma di hamu sude,...

Kamis, 01 Juli 2010

@ Pak Heri

Tugas saya bukan yang di bawah ini Pak... tapi yang sistem pengeras suara di samping tulisan BERANDA diatas

PERANCANGAN SISTEM INFORMASI GEOGRAFIS DAERAH BANJIR

Sistem Informasi Geografis adalah sistem informasi yang digunakan untuk memasukkan, menyimpan, memanggil kembali, mengolah, menganalisa, dan menghasilkan data bereferensi geografis atau geospatial, untuk mendukung pengambilan keputusan dalam suatu perencanaan. Dengan menggunakan SIG (sistem informasi geografi) maka akan lebih mudah bagi para pengambil keputusan untuk menganalisa data yang ada. Karena dengan adanya SIG maka akan digambarkan juga posisi penyebaran data pada kondisi sesungguhnya. Pada penulisan tugas akhir ini, penulis membuat suatu Perancangan Sistem Informasi Geografis untuk mengetahui daerah-daerah yang dilanda banjir.

Dari sistem aplikasi ini diharapkan terwujudnya SIG dalam pemahaman pada kondisi banjir yaitu memberikan pengetahuan tambahan bagaimana kita sebagai masyarakat agar dapat mengatasi masalah banjir.

1. Data Input : subsistem ini bertugas untuk mengumpulkan, mempersiapkan data spasial dan atribut dari berbagai sumber, dan bertanggung jawab dalam mengkonversi format data-data aslinya ke dalam format yang dapat digunakan oleh SIG.

2. Data Output : subsistem ini menampilkan atau menghasilkan keluaran seluruh atau sebagian basisdata baik dalam bentuk softcopy maupun hardcopy seperti: tabel, grafik, peta dan lain-lain

3. Proses Data Management : subsistem ini mengorganisasikan baik data spasial maupun atribut ke dalam sebuah basidata sedemikian rupa sehingga mudah dipanggil, diupdate, dan diedit.

4. Data dan Analisis : subsistem ini menentukan informasi-informasi yang dapat dihasilkan oleh SIG. Selain itu, subsistem ini juga melakukan manipulasi dan pemodelan data untuk menghasilkan informasi yang diharapkan.

Berikut diagram yang dapat menjelaskan cara kerja sistem ini :

Use Case Diagram Sistem Peringatan Dini Banjir




Pada dasarnya, istilah sistem informasi geografis merupakan gabungan dari tiga unsur pokok: sistem, informasi, dan geografis.. Dengan melihat unsur-unsur pokoknya, maka jelas SIG merupakan salah satu sistem informasi dan SIG merupakan suatu sistem yang menekankan pada unsur "Informasi Geografis". Penggunaan kata Geografis" mengandung pengertian suatu persoalan mengenai bumi: permukaan dua atau tiga dimensi. Istilah "Informasi Geografis" mengandung pengertian informasi mengenai keterangan-keterangan (atribut) yang terdapat di permukaan bumi yang posisinya diberikan atau diketahui. Dengan memperhatikan pengertian informasi yang ada di suatu area geografi, lingkungan, dan karakteristik yang mengikuti suatu daerah geografi. SIG dapat digunakan oleh berbagai bidang ilmu, pekerjaan, atau peristiwa seperti arkeologi, agrikultur, keamanan dan pertahanan, kesehatan, pemerintahan, kehutanan, pendidikan, kelautan, hasil alam, bencana, tempat wisata dan masih banyak lagi. SIG dapat menjawab pertanyaan-pertanyaan umum dan kompleks yang terjadi dalam suatu instansi, SIG juga dapat membantu istem Informasi, maka SIG merupakan suatu kesatuan formal yang terdiri dari berbagai sumber daya fisik dan logika yang berkenaan dengan objek-objek yang terdapat di permukaan bumi. Dan, SIG merupakan sejenis perangkat lunak yang dapat digunakan untuk pemasukkan, penyimpanan, manipulasi, menampilkan, dan keluaran informasi geografis berikut atribut-atributnya.

Senin, 14 Juni 2010

Mengenal Robot

Robot


Robot humanoid memainkan trompet

Robot adalah sebuah alat mekanik yang dapat melakukan tugas fisik, baik menggunakan pengawasan dan kontrol manusia, ataupun menggunakan program yang telah didefinisikan terlebih dulu (kecerdasan buatan). Robot biasanya digunakan untuk tugas yang berat, berbahaya, pekerjaan yang berulang dan kotor. Biasanya kebanyakan robot industri digunakan dalam bidang produksi. Penggunaan robot lainnya termasuk untuk pembersihan limbah beracun, penjelajahan bawah air dan luar angkasa, pertambangan, pekerjaan "cari dan tolong" (search and rescue), dan untuk pencarian tambang. Belakangan ini robot mulai memasuki pasaran konsumen di bidang hiburan, dan alat pembantu rumah tangga, seperti penyedot debu, dan pemotong rumput.

Perkembangan sekarang

Ketika para pencipta robot pertama kali mencoba meniru manusia dan hewan, mereka menemukan bahwa hal tersebut sangatlah sulit; membutuhkan tenaga penghitungan yang jauh lebih banyak dari yang tersedia pada masa itu. Jadi, penekanan perkembangan diubah ke bidang riset lainnya. Robot sederhana beroda digunakan untuk melakukan eksperimen dalam tingkah laku, navigasi, dan perencanaan jalur. Teknik navigasi tersebut telah berkembang menjadi sistem kontrol robot otonom yang tersedia secara komersial; contoh paling mutakhir dari sistem kontrol navigasi otonom yang tersedia sekarang ini termasuk sistem navigasi berdasarkan-laser dan VSLAM (Visual Simultaneous Localization and Mapping) dari ActivMedia Robotics dan Evolution Robotics.

Ketika para teknisi siap untuk mencoba robot berjalan kembali, mereka mulai dengan heksapoda dan platform berkaki banyak lainnya. Robot-robot tersebut meniru serangga dan arthropoda dalam bentuk dan fungsi. Tren menuju jenis badan tersebut menawarkan fleksibilitas yang besar dan terbukti dapat beradaptasi dengan berbagai macam lingkungan, tetapi biaya dari penambahan kerumitan mekanikal telah mencegah pengadopsian oleh para konsumer. Dengan lebih dari empat kaki, robot-robot ini stabil secara statis yang membuat mereka bekerja lebih mudah. Tujuan dari riset robot berkaki dua adalah mencapai gerakan berjalan menggunakan gerakan pasif-dinamik yang meniru gerakan manusia. Namun hal ini masih dalam beberapa tahun mendatang.

Masalah teknis lain yang menghalangi penerapan robot secara meluas adalah kompleksitas penanganan obyek fisik dalam lingkungan alam yang tetap kacau. Sensor taktil dan algoritma penglihatan yang lebih baik mungkin dapat menyelesaikan masalah ini. Robot Online UJI dari University Jaume I di Spanyol adalah contoh yang bagus dari perkembangan yang berlaku dalam bidang ini.

Belakangan ini, perkembangan hebat telah dibuat dalam robot medis, dengan dua perusahaan khusus, Computer Motion dan Intuitive Surgical, yang menerima pengesahan pengaturan di Amerika Utara, Eropa dan Asia atas robot-robotnya untuk digunakan dalam prosedur pembedahan minimal. Otomasi laboratorium juga merupakan area yang berkembang. Di sini, robot benchtopdigunakan untuk memindahkan sampel biologis atau kimiawi antar perangkat seperti inkubator, berupa pemegang dan pembaca cairan. Tempat lain dimana robot disukai untuk menggantikan pekerjaan manusia adalah dalam eksplorasi laut dalam dan eksplorasi antariksa. Untuk tugas-tugas ini, bentuk tubuh artropoda umumnya disukai. Mark W. Tilden dahulunya spesialis Laboratorium Nasional Los Alamos membuat robot murah dengan kaki bengkok tetapi tidak menyambung, sementara orang lain mencoba membuat kaki kepiting yang dapat bergerak dan tersambung penuh.

Robot bersayap eksperimental dan contoh lain mengeksploitasi biomimikri juga dalam tahap pengembangan dini. Yang disebut "nanomotor" dan "kawat cerdas" diperkirakan dapat menyederhanakan daya gerak secara drastis, sementara stabilisasi dalam penerbangan nampaknya cenderung diperbaiki melalui giroskop yang sangat kecil. Dukungan penting pekerjaan ini adalah untuk riset militer teknologi pemata-mataan.

Robot Mikro yang Mampu Bekerja Dalam Tubuh

Robot Mikro yang Mampu Bekerja Dalam Tubuh

Robot Mini

Robot Mini

Ilmuwan di Korea telah membuat robot-robot yang cukup kecil untuk bisa menjelajahi tubuh manusia dan digerakkan oleh otot jantung.

Sukho Park di Chonnam National University, Korea, dan rekan-rekannya telah merancang sebuah robot-mikro yang digerakkan oleh sel. Tim Park membuat robot tersebut dengan menumbuhkan jaringan otot jantung dari sebuah tikus pada kerangka-kerangka robot kecil yang dibuat dari polidimetilsiloksana (PDMS). PDMS merupakan polimer biokompatibel sehingga membuat robot tersebut cocok digunakan dalam pengaplikasian biomedik.

Yang istimewa pada robot-robot ini, kata Park, adalah mereka tidak memerlukan suplai energi eksternal. Tetapi sel-sel otot jantung yang berelaksasi dan berkontraksi yang memberikan energi. Sel-sel otot jantung sendiri mendapatkan energinya dari sebuah medium kultur glukosa. Sel-sel yang berdenyut sendiri ini memungkinkan robot tersebut menggerakkan keenam kakinya.

Robot ini memiliki tiga kaki depan yang pendek (panjang 400 mikrometer) dan tiga kaki belakang yang lebih panjang (panjang 1200 mikrometer), semuanya terpasang pada sebuah badan segiempat. Pada saat sel-sel jantung berkontraksi, kaki belakang yang lebih panjang menekuk ke dalam. Ini menghasilkan perbedaan gesekan antara kaki depan dan kaki belakang, yang menekan robot bergerak maju. Para peneliti mengukur kecepatan rata-rata robot ini sekitar 100 mikrometer per detik.

Park mengatakan robot-robot yang mirip kepiting ini bisa digunakan di dalam tubuh untuk membersihkan rongga atau pembuluh yang tersumbat, dengan melepaskan sebuah agen pelarut untuk membersihkan penyumbatan yang mereka lalui.

Robotics Fundamentals Series

Robotics Fundamentals Series


Overview




Autonomous mobile robots essentially perform three tasks: sense, think, and act. These three tasks include communication with sensors to obtain data from the robot's environment, execution of algorithms for localization and planning, and driving actuators to control the robot's motion. LabVIEW addresses each task by providing drivers for interfacing with sensors, tools for developing or reusing existing algorithms, and integration with NI hardware for driving motors.

Sense

From data acquisition to sensor fusion, learn how to combine the power of LabVIEW with graphical system design to quickly and efficiently complete the perception phase of your robotics application.

Lidar
Light Detection & Ranging is a remote sensing technology that uses the time delay and scattering properties of reflected laser pulses to identify characteristics of surrounding objects.
Camera (CCD and CMOS)
CCDs and CMOS image sensors use photo-active regions to read light characteristics in order to generate images. They provide the capability for environmental analysis, navigation, object identification and tracking.
More Articles Related to Sensors and Perception
View extensive documentation that provides in-depth knowledge on sensors for mobile robots, localization and inertial sensing and signal processing as it pertains to robotics.

Think

Take advantage of custom algorithm development, analysis, and visualization as you learn how to capitalize upon a full suite of LabVIEW tools for navigation, mapping and more.

Planning and Navigation
Planning and navigation for an autonomous mobile robot involves purposeful decision-making and execution that a system utilizes to achieve its highest-order goals.
Autonomous Map Building
Autonomous map building is when a robot generates a map of the environment using sensor information, while localizing itself relative to the map.
Localization
Localization allows autonomous mobile robots to determine their position in the environment. These robots usually follow two types of approaches: behavior-based navigation and map-based navigation.
Machine Learning
Robots can be programmed to learn about their world just like a human child. Trial and error, test and compare, and success and failure are all methods that humans use.
Multi-Robotics
An emerging field of robotics is the concept of autonomous robots operating as part of a greater group or swarm. The applications include search and rescue, rapid mapping of an area, or automated mine clearing.

Act

Learn how to build advanced systems incorporating software capabilities such as control, communication, data logging, and signal processing while performing logic and motion.

Drive an Actuator
A robot uses actuators to perform physical actions such as transporting the robot from one place to another.
Control Laws
Control laws are used to dictate how a robot moves within its environment by sending commands to actuators.
Self Optimization
The PID control algorithm is the basis for many advanced control algorithms and strategies used in robotics. For a PID control algorithm to have optimal performance, the PID controller must be properly tuned.

Kamis, 10 Juni 2010

KKapasitor - Prinsip dasar dan spesifikasi elektriknya







Kapasitor adalah komponen elektronika yang dapat menyimpan muatan listrik. Struktur sebuah kapasitor terbuat dari 2 buah plat metal yang dipisahkan oleh suatu bahan dielektrik. Bahan-bahan dielektrik yang umum dikenal misalnya udara vakum, keramik, gelas dan lain-lain. Jika kedua ujung plat metal diberi tegangan listrik, maka muatan-muatan positif akan mengumpul pada salah satu kaki (elektroda) metalnya dan pada saat yang sama muatan-muatan negatif terkumpul pada ujung metal yang satu lagi. Muatan positif tidak dapat mengalir menuju ujung kutup negatif dan sebaliknya muatan negatif tidak bisa menuju ke ujung kutup positif, karena terpisah oleh bahan dielektrik yang non-konduktif. Muatan elektrik ini "tersimpan" selama tidak ada konduksi pada ujung-ujung kakinya. Di alam bebas, phenomena kapasitor ini terjadi pada saat terkumpulnya muatan-muatan positif dan negatif di awan. Prinsip kapasitor

Gambar 1 : prinsip dasar kapasitor

Kapasitansi

Kapasitansi didefenisikan sebagai kemampuan dari suatu kapasitor untuk dapat menampung muatan elektron. Coulombs pada abad 18 menghitung bahwa 1 coulomb = 6.25 x 1018 elektron. Kemudian Michael Faraday membuat postulat bahwa sebuah kapasitor akan memiliki kapasitansi sebesar 1 farad jika dengan tegangan 1 volt dapat memuat muatan elektron sebanyak 1 coulombs. Dengan rumus dapat ditulis :

Q = CV …………….(1)

Q = muatan elektron dalam C (coulombs)

C = nilai kapasitansi dalam F (farads)

V = besar tegangan dalam V (volt)

Dalam praktek pembuatan kapasitor, kapasitansi dihitung dengan mengetahui luas area plat metal (A), jarak (t) antara kedua plat metal (tebal dielektrik) dan konstanta (k) bahan dielektrik. Dengan rumusan dapat ditulis sebagai berikut :

C = (8.85 x 10-12) (k A/t) ...(2)

Berikut adalah tabel contoh konstanta (k) dari beberapa bahan dielektrik yang disederhanakan.

Tabel-1 : Konstanta dielektrik bahan kapasitor

Tabel konstanta dielektrik bahan kapasitor

Tabel konstanta dielektrik bahan kapasitor

Untuk rangkain elektronik praktis, satuan farads adalah sangat besar sekali. Umumnya kapasitor yang ada di pasar memiliki satuan uF (10-6 F), nF (10-9 F) dan pF (10-12 F). Konversi satuan penting diketahui untuk memudahkan membaca besaran sebuah kapasitor. Misalnya 0.047uF dapat juga dibaca sebagai 47nF, atau contoh lain 0.1nF sama dengan 100pF.

Tipe Kapasitor

Kapasitor terdiri dari beberapa tipe, tergantung dari bahan dielektriknya. Untuk lebih sederhana dapat dibagi menjadi 3 bagian, yaitu kapasitor electrostatic, electrolytic dan electrochemical.

Kapasitor Electrostatic

Kapasitor electrostatic adalah kelompok kapasitor yang dibuat dengan bahan dielektrik dari keramik, film dan mika. Keramik dan mika adalah bahan yang popular serta murah untuk membuat kapasitor yang kapasitansinya kecil. Tersedia dari besaran pF sampai beberapa uF, yang biasanya untuk aplikasi rangkaian yang berkenaan dengan frekuensi tinggi. Termasuk kelompok bahan dielektrik film adalah bahan-bahan material seperti polyester (polyethylene terephthalate atau dikenal dengan sebutan mylar), polystyrene, polyprophylene, polycarbonate, metalized paper dan lainnya.

Mylar, MKM, MKT adalah beberapa contoh sebutan merek dagang untuk kapasitor dengan bahan-bahan dielektrik film. Umumnya kapasitor kelompok ini adalah non-polar.

Kapasitor Electrolytic

Kelompok kapasitor electrolytic terdiri dari kapasitor-kapasitor yang bahan dielektriknya adalah lapisan metal-oksida. Umumnya kapasitor yang termasuk kelompok ini adalah kapasitor polar dengan tanda + dan - di badannya. Mengapa kapasitor ini dapat memiliki polaritas, adalah karena proses pembuatannya menggunakan elektrolisa sehingga terbentuk kutup positif anoda dan kutup negatif katoda.

Telah lama diketahui beberapa metal seperti tantalum, aluminium, magnesium, titanium, niobium, zirconium dan seng (zinc) permukaannya dapat dioksidasi sehingga membentuk lapisan metal-oksida (oxide film). Lapisan oksidasi ini terbentuk melalui proses elektrolisa, seperti pada proses penyepuhan emas. Elektroda metal yang dicelup kedalam larutan electrolit (sodium borate) lalu diberi tegangan positif (anoda) dan larutan electrolit diberi tegangan negatif (katoda). Oksigen pada larutan electrolyte terlepas dan mengoksidai permukaan plat metal. Contohnya, jika digunakan Aluminium, maka akan terbentuk lapisan Aluminium-oksida (Al2O3) pada permukaannya.

Gambar-2 : Prinsip kapasitor Elco

Dengan demikian berturut-turut plat metal (anoda), lapisan-metal-oksida dan electrolyte(katoda) membentuk kapasitor. Dalam hal ini lapisan-metal-oksida sebagai dielektrik. Dari rumus (2) diketahui besar kapasitansi berbanding terbalik dengan tebal dielektrik. Lapisan metal-oksida ini sangat tipis, sehingga dengan demikian dapat dibuat kapasitor yang kapasitansinya cukup besar.

Karena alasan ekonomis dan praktis, umumnya bahan metal yang banyak digunakan adalah aluminium dan tantalum. Bahan yang paling banyak dan murah adalah Aluminium. Untuk mendapatkan permukaan yang luas, bahan plat Aluminium ini biasanya digulung radial. Sehingga dengan cara itu dapat diperoleh kapasitor yang kapasitansinya besar. Sebagai contoh 100uF, 470uF, 4700uF dan lain-lain, yang sering juga disebut kapasitor elco.


Bahan electrolyte pada kapasitor Tantalum ada yang cair tetapi ada juga yang padat. Disebut electrolyte padat, tetapi sebenarnya bukan larutan electrolit yang menjadi elektroda negatif-nya, melainkan bahan lain yaitu manganese-dioksida. Dengan demikian kapasitor jenis ini bisa memiliki kapasitansi yang besar namun menjadi lebih ramping dan mungil. Selain itu karena seluruhnya padat, maka waktu kerjanya (lifetime) menjadi lebih tahan lama. Kapasitor tipe ini juga memiliki arus bocor yang sangat kecil Jadi dapat dipahami mengapa kapasitor Tantalum menjadi relatif mahal.


Kapasitor Electrochemical

Satu jenis kapasitor lain adalah kapasitor electrochemical. Termasuk kapasitor jenis ini adalah batere dan accu. Pada kenyataanya batere dan accu adalah kapasitor yang sangat baik, karena memiliki kapasitansi yang besar dan arus bocor (leakage current) yang sangat kecil. Tipe kapasitor jenis ini juga masih dalam pengembangan untuk mendapatkan kapasitansi yang besar namun kecil dan ringan, misalnya untuk applikasi mobil elektrik dan telepon selular.

Membaca Kapasitansi

Pada kapasitor yang berukuran besar, nilai kapasitansi umumnya ditulis dengan angka yang jelas. Lengkap dengan nilai tegangan maksimum dan polaritasnya. Misalnya pada kapasitor elco dengan jelas tertulis kapasitansinya sebesar 22uF/25v.

Kapasitor yang ukuran fisiknya mungil dan kecil biasanya hanya bertuliskan 2 (dua) atau 3 (tiga) angka saja. Jika hanya ada dua angka satuannya adalah pF (pico farads). Sebagai contoh, kapasitor yang bertuliskan dua angka 47, maka kapasitansi kapasitor tersebut adalah 47 pF.

Jika ada 3 digit, angka pertama dan kedua menunjukkan nilai nominal, sedangkan angka ke-3 adalah faktor pengali. Faktor pengali sesuai dengan angka nominalnya, berturut-turut 1 = 10, 2 = 100, 3 = 1.000, 4 = 10.000 dan seterusnya. Misalnya pada kapasitor keramik tertulis 104, maka kapasitansinya adalah 10 x 10.000 = 100.000pF atau = 100nF. Contoh lain misalnya tertulis 222, artinya kapasitansi kapasitor tersebut adalah 22 x 100 = 2200 pF = 2.2 nF.

Selain dari kapasitansi ada beberapa karakteristik penting lainnya yang perlu diperhatikan. Biasanya spesifikasi karakteristik ini disajikan oleh pabrik pembuat didalam datasheet. Berikut ini adalah beberapa spesifikasi penting tersebut.

Tegangan Kerja (working voltage)

Tegangan kerja adalah tegangan maksimum yang diijinkan sehingga kapasitor masih dapat bekerja dengan baik. Para elektro- mania barangkali pernah mengalami kapasitor yang meledak karena kelebihan tegangan. Misalnya kapasitor 10uF 25V, maka tegangan yang bisa diberikan tidak boleh melebihi 25 volt dc. Umumnya kapasitor-kapasitor polar bekerja pada tegangan DC dan kapasitor non-polar bekerja pada tegangan AC.


Temperatur Kerja

Kapasitor masih memenuhi spesifikasinya jika bekerja pada suhu yang sesuai. Pabrikan pembuat kapasitor umumnya membuat kapasitor yang mengacu pada standar popular. Ada 4 standar popular yang biasanya tertera di badan kapasitor seperti C0G (ultra stable), X7R (stable) serta Z5U dan Y5V (general purpose). Secara lengkap kode-kode tersebut disajikan pada table berikut.

Tabel-2 : Kode karakteristik kapasitor kelas I

Kode karakteristik kapasitor kelas I

Tabel-3 : Kode karakteristik kapasitor kelas II dan III

Kode karakteristik kapasitor kelas II dan III

Toleransi

Seperti komponen lainnya, besar kapasitansi nominal ada toleransinya. Tabel diatas menyajikan nilai toleransi dengan kode-kode angka atau huruf tertentu. Dengan table di atas pemakai dapat dengan mudah mengetahui toleransi kapasitor yang biasanya tertera menyertai nilai nominal kapasitor. Misalnya jika tertulis 104 X7R, maka kapasitasinya adalah 100nF dengan toleransi +/-15%. Sekaligus dikethaui juga bahwa suhu kerja yang direkomendasikan adalah antara -55Co sampai +125Co (lihat tabel kode karakteristik)

Insulation Resistance (IR)

Walaupun bahan dielektrik merupakan bahan yang non-konduktor, namun tetap saja ada arus yang dapat melewatinya. Artinya, bahan dielektrik juga memiliki resistansi. walaupun nilainya sangat besar sekali. Phenomena ini dinamakan arus bocor DCL (DC Leakage Current) dan resistansi dielektrik ini dinamakan Insulation Resistance (IR). Untuk menjelaskan ini, berikut adalah model rangkaian kapasitor.

model rangkaian kapasitor

Gambar-3 : Model rangkaian kapasitor

C = Capacitance

ESR = Equivalent Series Resistance

L = Inductance

IR = Insulation Resistance

Jika tidak diberi beban, semestinya kapasitor dapat menyimpan muatan selama-lamanya. Namun dari model di atas, diketahui ada resitansi dielektrik IR(Insulation Resistance) yang paralel terhadap kapasitor. Insulation resistance (IR) ini sangat besar (MOhm). Konsekuensinya tentu saja arus bocor (DCL) sangat kecil (uA). Untuk mendapatkan kapasitansi yang besar diperlukan permukaan elektroda yang luas, tetapi ini akan menyebabkan resistansi dielektrik makin kecil. Karena besar IR selalu berbanding terbalik dengan kapasitansi (C), karakteristik resistansi dielektrik ini biasa juga disajikan dengan besaran RC (IR x C) yang satuannya ohm-farads atau megaohm-micro farads.

Dissipation Factor (DF) dan Impedansi (Z)

Dissipation Factor adalah besar persentasi rugi-rugi (losses) kapasitansi jika kapasitor bekerja pada aplikasi frekuensi. Besaran ini menjadi faktor yang diperhitungkan misalnya pada aplikasi motor phasa, rangkaian ballast, tuner dan lain-lain. Dari model rangkaian kapasitor digambarkan adanya resistansi seri (ESR) dan induktansi (L). Pabrik pembuat biasanya meyertakan data DF dalam persen. Rugi-rugi (losses) itu didefenisikan sebagai ESR yang besarnya adalah persentasi dari impedansi kapasitor Xc. Secara matematis di tulis sebagai berikut :

Faktor dissipasi

Gambar-4 : Faktor dissipasi

Dari penjelasan di atas dapat dihitung besar total impedansi (Z total) kapasitor adalah :

Impedansi Z

Gambar-5 : Impendansi Z

Karakteristik respons frekuensi sangat perlu diperhitungkan terutama jika kapasitor bekerja pada frekuensi tinggi. Untuk perhitungan respons frekuensi dikenal juga satuan faktor qualitas Q (quality factor) yang tak lain sama dengan 1/DF.

Cara kerja Semikonduktor

Pada dasarnya, transistor dan tabung vakum memiliki fungsi yang serupa; keduanya mengatur jumlah aliran arus listrik.

Untuk mengerti cara kerja semikonduktor, misalkan sebuah gelas berisi air murni. Jika sepasang konduktor dimasukan kedalamnya, dan diberikan tegangan DC tepat dibawah tegangan elektrolisis (sebelum air berubah menjadi Hidrogen dan Oksigen), tidak akan ada arus mengalir karena air tidak memiliki pembawa muatan (charge carriers). Sehingga, air murni dianggap sebagai isolator. Jika sedikit garam dapur dimasukan ke dalamnya, konduksi arus akan mulai mengalir, karena sejumlah pembawa muatan bebas (mobile carriers, ion) terbentuk. Menaikan konsentrasi garam akan meningkatkan konduksi, namun tidak banyak. Garam dapur sendiri adalah non-konduktor (isolator), karena pembawa muatanya tidak bebas.

Silikon murni sendiri adalah sebuah isolator, namun jika sedikit pencemar ditambahkan, seperti Arsenik, dengan sebuah proses yang dinamakan doping, dalam jumlah yang cukup kecil sehingga tidak mengacaukan tata letak kristal silikon, Arsenik akan memberikan elektron bebas dan hasilnya memungkinkan terjadinya konduksi arus listrik. Ini karena Arsenik memiliki 5 atom di orbit terluarnya, sedangkan Silikon hanya 4. Konduksi terjadi karena pembawa muatan bebas telah ditambahkan (oleh kelebihan elektron dari Arsenik). Dalam kasus ini, sebuah Silikon tipe-n (n untuk negatif, karena pembawa muatannya adalah elektron yang bermuatan negatif) telah terbentuk.

Selain dari itu, silikon dapat dicampur dengan Boron untuk membuat semikonduktor tipe-p. Karena Boron hanya memiliki 3 elektron di orbit paling luarnya, pembawa muatan yang baru, dinamakan "lubang" (hole, pembawa muatan positif), akan terbentuk di dalam tata letak kristal silikon.

Dalam tabung hampa, pembawa muatan (elektron) akan dipancarkan oleh emisi thermionic dari sebuah katode yang dipanaskan oleh kawat filamen. Karena itu, tabung hampa tidak bisa membuat pembawa muatan positif (hole).

Dapat disimak bahwa pembawa muatan yang bermuatan sama akan saling tolak menolak, sehingga tanpa adanya gaya yang lain, pembawa-pembawa muatan ini akan terdistribusi secara merata di dalam materi semikonduktor. Namun di dalam sebuah transistor bipolar (atau diode junction) dimana sebuah semikonduktor tipe-p dan sebuah semikonduktor tipe-n dibuat dalam satu keping silikon, pembawa-pembawa muatan ini cenderung berpindah ke arah sambungan P-N tersebut (perbatasan antara semikonduktor tipe-p dan tipe-n), karena tertarik oleh muatan yang berlawanan dari seberangnya.

Kenaikan dari jumlah pencemar (doping level) akan meningkatkan konduktivitas dari materi semikonduktor, asalkan tata-letak kristal silikon tetap dipertahankan. Dalam sebuah transistor bipolar, daerah terminal emiter memiliki jumlah doping yang lebih besar dibandingkan dengan terminal basis. Rasio perbandingan antara doping emiter dan basis adalah satu dari banyak faktor yang menentukan sifat penguatan arus (current gain) dari transistor tersebut.

Jumlah doping yang diperlukan sebuah semikonduktor adalah sangat kecil, dalam ukuran satu berbanding seratus juta, dan ini menjadi kunci dalam keberhasilan semikonduktor. Dalam sebuah metal, populasi pembawa muatan adalah sangat tinggi; satu pembawa muatan untuk setiap atom. Dalam metal, untuk mengubah metal menjadi isolator, pembawa muatan harus disapu dengan memasang suatu beda tegangan. Dalam metal, tegangan ini sangat tinggi, jauh lebih tinggi dari yang mampu menghancurkannya. Namun, dalam sebuah semikonduktor hanya ada satu pembawa muatan dalam beberapa juta atom. Jumlah tegangan yang diperlukan untuk menyapu pembawa muatan dalam sejumlah besar semikonduktor dapat dicapai dengan mudah. Dengan kata lain, listrik di dalam metal adalah inkompresible (tidak bisa dimampatkan), seperti fluida. Sedangkan dalam semikonduktor, listrik bersifat seperti gas yang bisa dimampatkan. Semikonduktor dengan doping dapat dirubah menjadi isolator, sedangkan metal tidak.

Gambaran di atas menjelaskan konduksi disebabkan oleh pembawa muatan, yaitu elektron atau lubang, namun dasarnya transistor bipolar adalah aksi kegiatan dari pembawa muatan tersebut untuk menyebrangi daerah depletion zone. Depletion zone ini terbentuk karena transistor tersebut diberikan tegangan bias terbalik, oleh tegangan yang diberikan di antara basis dan emiter. Walau transistor terlihat seperti dibentuk oleh dua diode yang disambungkan, sebuah transistor sendiri tidak bisa dibuat dengan menyambungkan dua diode. Untuk membuat transistor, bagian-bagiannya harus dibuat dari sepotong kristal silikon, dengan sebuah daerah basis yang sangat tipis.

Transistor

Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung (switching), stabilisasi tegangan, modulasi sinyal atau sebagai fungsi lainnya. Transistor dapat berfungsi semacam kran listrik, dimana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya.

Transistor through-hole (dibandingkan dengan pita ukur sentimeter)

Pada umumnya, transistor memiliki 3 terminal. Tegangan atau arus yang dipasang di satu terminalnya mengatur arus yang lebih besar yang melalui 2 terminal lainnya. Transistor adalah komponen yang sangat penting dalam dunia elektronik modern. Dalam rangkaian analog, transistor digunakan dalam amplifier (penguat). Rangkaian analog melingkupi pengeras suara, sumber listrik stabil, dan penguat sinyal radio. Dalam rangkaian-rangkaian digital, transistor digunakan sebagai saklar berkecepatan tinggi. Beberapa transistor juga dapat dirangkai sedemikian rupa sehingga berfungsi sebagai logic gate, memori, dan komponen-komponen lainnya.

Jumat, 28 Mei 2010

TUGAS 4

1.Perbedaan antara computer engineering dan computer science adalah :
Kalau computer engineering itu adalah proses untuk mempelajari yang telah ada dan membuat sesuatu yang baru yang berhubungan dengan computer sedangkan computer science itu adalah proses pembelajaran ilmu yang telah ada tanpa membuat sesuatu yang baru.Jadi , computer engineering membuat sesuatu yang baru sementara computer science hanya mempelajari ilmu nya saja secara mendalam.

2.Ilmu adalah sesuatu yang telah ada untuk di pelajari kembali agar lebih paham dan mengerti.
Teknik adalah penerapan dari ilmu yang telah di pelajari untuk dapat menciptakan sesuatu yang berguna bagi masyarakat.
Teknologi adalah hasil proses dari pembelajaran teknik yang dapat di gunakan dalam masyarakat.
Teknik elektronika adalah jurusan teknik yang mempelajari segala sesuatu yang berhubungan dengan elektronika dan aplikasinya.

Kamis, 22 April 2010

Teknologi Efek Animasi Film Star Wars

pedang

Sekarang ini banyak sekali film-film yang menggunakan efek-efek khusus. Contohnya, penggunaan pedang cahaya seperti dalam film Star Wars, Millenium Falcon, Yoda dan bahkan Chitty-Chitty Bang Bang. Pedang cahaya adalah efek khusus yang seolah-olah sangat nyata sehingga akan membuat penonton percaya jika pedang itu benar-benar ada. Teknik yang digunakan untuk membuat pedang cahaya dalam film Star Wars seperti pekerjaan yang terlihat sederhana, tetapi lamban pengerjaannya.

Dalam adegan film tersebut, aktor menggunakan pedang cahaya yang bergagang plastik dan batang pedang dari aluminium yang diberi warna merah, hijau atau biru. Aktor menggunakan pedang tiruan ini seolah-olah pedang cahaya yang sesungguhnya.

Setelah direkam, film dibawa ke pembuatan efek khusus. Pada film ini aktor ini berperang menggunakan pedang yang di cat bukan pedang bersinar. Ahli efek khusus mempunyai tugas untuk membuat pedang ber-cat terlihat nyata. Dia melihat film itu frame demi frame, kemudian memproyeksikan frame yang memuat pedang cahaya diatas sepotong plastik tembus cahaya yang disebut sel animasi. Ahli efek khusus menggambar kerangka setiap pedang cahaya pada frame tersebut di atas sel animasi. Susunan sel-sel ini jernih, kecuali bagian-bagian tertentu dimana pedang cahaya di perlihatkan.

Searang, sebuah film baru siap direkam. Pada film ini setiap sel animasi ditempatkan di atas latar belakang yang berwarna hitam, dan direkan dengan pemancar lampu di atas lensa. Pemancar memberi cahaya di sekeliling pedang cahaya tersebut. Jika kamu memutar film ini pada proyektor, kamu melihat pedang cahaya itu bergerak di atas latar belakang yang berwarna hitam. Sebelum film di cuci. Film yang telah dihasilkan tadi akan disatukan di atas film yang sama. Hasilnya akan sangat mengagumkan, pedang cahaya terlihat terang dan nyata.

Setelah proses diatas telah selesai, film dipindah ke dalam bentuk digital. Disini tugas menganimasikan pedang tersebut sedikit lebih mudah. Dalam dunia digital, setiap frame film di scan ke komputer dengan resolusi tingkat tinggi sehingga tiap frame dapat di manipulasi pada layar komputer. Kemudian, menggambar garis bentuk pedang, mewarnai garis bentuk pedang, mewarnai bagian tertentu, dan mengaburkan frame demi frame. Selain di kerjakan di atas sel plastik, pengerjaan pedang cahaya juga dapat di kerjakan pada sel-sel yang terpisah dalam memori komputer, kemudian digabungkan secara digital. Akan tetapi, walaupun terlihat sederhana, animator masih harus melihat frame demi frame dan menggambar kerangka pedang cahaya satu demi satu sehingga proses pengerjaannya memakan waktu yang lama.

Menilik Berbagai Sisi dari Perkembangan Nuklir

1. Sejarah Bom Nuklir

Sebulan sebelum PD II pecah, tepatnya 2 Agustus 1939, ilmuwan besar Albert Einstein mengirim surat kepada Presiden AS Franklin Delano Roosevelt. Dalam suratnya Einstein mengabarkan bahwa Nazi Jerman tengah giat memurnikan uranium-235 dan kemungkinan akan mengembangkan penemuan baru ini menjadi bom atom yang sangat spektakuler. Bom berbahan bakar zat radioaktif ini belum pernah dibuat dimanapun. Kekuatannya yang berjuta-juta kali lipat bahan peledak konvensional trinitro toluena (TNT) bisa menghancurkan kota dalam hitungan detik. Einstein menambahkan, pemerintah mantan negerinya itu secara diam-diam mulai menghentikan penjualan Uranium dari Cekoslovakia (dahulu) dan mengambil alih tambang-tambangnya. Menyiasati hal ini, menurut Einstein, semestinya Amerika bisa mendahului pengembangan bom nuklir sebelum Jerman melakukannya.
Tidak lama setelah surat Einstein diterima presiden, AS segera menggelar suatu proyek rahasia
bersandi "Project Manhattan". Seratus ribu orang dipekerjakan dalam pabrik-pabrik yang dibangun di Hanford, Washington, Oak Ridge, Tennese, dan di laboratorium utama di Los Alamos, New Mexico seluas 20.000 hektar. Banyak pekerja tidak diberitahu perihal apa yang mereka kerjakan. Insinyur-insinyur penting mungkin mengerti maksud Project Manhattan, namun mereka lebih memilih bekerja tanpa banyak bicara dibawah pengawasan penuh J. Robert Oppenheimer, seorang ahli fisika nuklir.
Memisahkan isotop uranium-235 yang ada di alam bukan perkara mudah dalam hal ini. Apalagi
sebagian besar terdiri atas isotop uranium dengan nomor massa 238 (U-238). Kadar U-235 sendiri di alam jumlahnya tidak lebih dari satu persen uranium metalnya. Padahal, kadar uranium di dalam batuan alam pun hanya 0,7 persen saja. Untuk inilah, konon AS mem-budget-kan biaya sebesar dua milyar dollar untuk penelitian dan penciptaan bom atom antara 1939-1945. Enam tahun kemudian, kerja keras itu terwujud. Little Boy seberat 4,5 ton dijatuhkan di atas Hiroshima pada 6 Agustus 1945. Bom uranium-235 ini membuat cendawan debu hingga ketinggian 45.000 kaki dengan ledakan dahsyat berantai, kilatan, api, dan gelombang kejut berkecepatan 1.100 kaki perdetik. Belum lagi efek ledakan ini menimbulkan hembusan angin berkecepatan ratusan mil perjam hingga radius puluhan mil. Sebanyak 137.000 nyawa tergulung dalam hitungan detik. Begitupun gedung-gedung, jembatan, dan semua instalasi, hancur tak bersisa.
Selang tiga hari kemudian, bom kedua dijatuhkan AS di Nagasaki. Kali ini 78.000 rakyat menjadi
santapan Fat Man, yakni bom atom bermuatan plutonium-239. PD II pun berakhir dengan berletutnya Jepang kepada Sekutu. Namun lebih daripada itu, dunia telah menyaksikan suatu kebiadaban dari penemuan baru para ilmuwan fisika yang sulit diterima akal.
Tragedi hitam di Jepang pada 6 dan 9 Agustus itu, diakui atau tidak, kemudian membawa dunia
masuk kedalam lorong persaingan membuat nuklir pemusnah. Perjanjian pencegahan dan pengurangan senjata nuklir dunia tahun 1972 yang terus digembar-geborkan AS ibarat tak mendapat hirauan. Lagipula, siapa bisa menjamin, konflik peperangan tidak akan membuat balistik-balistik nuklir yang telah bertebaran di banyak negara itu diluncurkan? Bahkan oleh AS sekalipun!

Menurut sebuah sumber penelitian yang dikeluarkan di Prancis April 2002, kini di dunia sedikitnya terdapat 1.400 reaktor nuklir yang dibangun sejak 1954. Dan lihatlah, 57 persennya digunakan untuk kepentingan sistem penyerangan/pertahanan militer. Jumlah itu terdapat antara lain dalam 220 kapal selam peluncur rudal, 250 kapal serang, 10 kapal induk, dan 14 kapal jelajah. Sebanyak 245 reaktor nuklir terapung dimiliki AS, Inggris, Prancis, Cina, dan Rusia
di dalam 182 kapal perang. Digarisbawahi, dunia seharusnya prihatin akan keamanan kapal-kapal selam nuklir Rusia. Tragedi Chernobyl, April 1986, di Soviet (Ukraina) setidaknya menjadi catatan sendiri. Tetapi, keprihatinan serupa juga dinyatakan bagi keamanan penyimpanan maupun perawatan limbah nuklir AS, Inggris, dan Prancis.

Pembelahan inti

Penciptaan energi nuklir menarik untuk dikaji. Terlebih sejak empat ilmuwan Jerman, yakni Otto Hahn, Lise Meitner, Fritz Strassman, dan Otto Frisch menemukan pertamakali tahun 1939, bahwa inti atom berat (radioaktif) bisa dibelah dengan menembakkan sebuah netron. Netron dipilih karena zarah ini tidak bermuatan. Sehingga tidak akan menimbulkan gaya tolak coulomb terhadap inti-inti atom bermuatan positif, proton. Reaksi pembelahan (fisi) sebuah inti akan menghasilkan rata-rata 2,5 netron dan beberapa inti baru. Pada bom atom, reaksi pembelahan ini akan terus berantai tidak terkendali karena netron baru tidak dicegah untuk menumbuk inti-inti yang telah dihasilkan.
Yang sangat bahaya, karena dalam setiap pembelahan inti akan terjadi pelepasan energi yang besar. Contohnya, pada pembelahan satu inti uranium dilepaskan energi sebesar 208 MeV. Satu
MeV setara dengan energi listrik 4,45 x 10-20 kWh. Itu baru untuk satu nuklida (inti atom). Coba bayangkan betapa besarnya energi yang dilepaskan oleh pembelahan inti satu kilogram uranium. Energinya akan mencapai 2,37 x 107 kWh. Bila energi ini digunakan untuk menghidupkan bola lampu 100 W, maka bola lampu itu akan terus menyala tanpa henti selama 30.000 tahun! Lain halnya bila dihitung dalam kalori, energi pembelahan satu kilogram U-235 adalah 25,5 juta kilogram kalori. Bandingkan dengan pembakaran satu kilogram karbon yang hanya menghasilkan 8,5 kalori.
Bila menilik ukuran atom, mungkin kita sulit percaya. Sebuah nuklida (yang tersusun oleh proton-proton dan netron) ukurannya berada dalam orde 10-15 meter. Untuk membuat bayangan sederhana, baiklah ukuran inti atom kita perbesar seukuran kelereng. Maka, bila kita tempatkan kelereng itu di tengah lapangan sepak bola, itulah gambaran nuklida di dalam atom. Sungguh kecil. Namun demikian, inti atom ternyata mengandung lebih dari 99,9 persen massa atomnya, atau setara dengan 1.800 kali massa sebuah orbitalnya, elektron. Selebihnya atom merupakan ruangan kosong.
Bom nuklir atau bom atom, sebenarnya tidak hanya bisa diciptakan melalui reaksi fisi. Para ahli kemudian mencoba membuat bom Hidrogen dengan cara melakukan penggabungan (fusi) inti-inti ringan deuterium (H2) dan tritium (H3). Dua inti bernomor atom kecil ini bila digabungkan akan membentuk helium (He-4) sambil membebaskan energi yang besar. Namun demikian, penyatuan dua nuklida tentu tidak mudah. Dibutuhkan energi yang sangat besar sebelumnya untuk melawan gaya tolak Coulomb. Artinya, untuk mendapatkan kelajuan inti yang sangat cepat agar bertumbukan, dibutuhkan suhu tinggi hingga ratusan juta Kelvin. Dengan kata lain, reaksi fusi harus didahului dengan fisi. Sehingga reaksi ini disebut reaksi termonuklir atau reaksi bertingkat.

Dengan demikian, bom hidrogen memiliki kekuatan lebih besar lagi dari bom atom. Maret 1954, AS telah mengujicoba bom hidrogen pertama bernama "Bravo" di Atol Bikini, Kepulauan Marshal, samudera Pasifik. Bravo berkekuatan 10 megaton TNT atau kira-kira 700 kali energi bom atom
Little Boy! Alhasil, jutaan ton pasir, batu karang, tumbuhan, dan fauna laut dalam radius 20 mil beterbangan membentuk cendawan raksasa membakar langit. Mengerikan, tiga Atol Bikini, yakni Bokonijien, Aerokojlol, dan Nam, tidak terlihat lagi di atas permukaan air.

Reaksi fusi nuklir dikenal terjadi di Matahari setiap saat. Dalam satu detik dibakar sekitar enam juta ton gas hidrogen! Reaksi serupa dengan kekuatan yang lebih besar lagi terjadi di bintang-bintang lain dalam tata surya. Beruntunglah jarak bumi kita tercinta cukup jauh dari Matahari atau bintang-bintang itu. Dengan begitu, alih-alih menjadi bencana, malah menjadi sumber energi kehidupan. Apapun itu, kekuatan energi nuklir telah memberikan pelajaran, bahwa rahasia-rahasia besar seringkali tersembunyi dalam zarah yang mikro sekalipun.

2. Manfaat nuklir secara umum
Pemanfaatan nuklir dapat dikategorikan untuk makanan, obat-obatan, kesehatan dan kedokteran, industri, transportasi, desalinasi air, listrik dan senjata. Pemanfaatan radio isotop telah dilakukan untuk keperluan makanan yang berhubungan dengan rekayasa pertanian dan peternakan. Pemanfaatan bahan nuklir untuk obat-obatan, kesehatan, kedokteran dan industri juga diperoleh dari radio isotop. Untuk transportasi dapat dibagi menjadi dua tipe, yaitu pemanfaatan langsung reaktor nuklir untuk transportasi dan pemanfaatan secara tak langsung dengan produksi hidrogen dari kelebihan panas reaktor nuklir, yang nantinya hidrogen tersebut dapat dimanfaatkan sebagai bahan bakar. Pemanfaatan reaktor nuklir berskala kecil untuk kendaraan telah dilakukan untuk keperluan eksplorasi di daerah terisolir seperti di kutub oleh pemerintah rusia sekitar tahun 1950 an, hanya saja untuk skala kendaraan komersial masih belum bisa dilakukan. Dalam skala kapal selam telah banyak dilakukan dengan memanfaatkan reaktor kecil untuk menggerakan mesin kapal selam tersebut. Pemikiran lain adalah untuk transportasi luar angkasa. Pemanfaatan energi nuklir untuk keperluan transportasi diatas khususnya kendaraan eksplorasi, kapal selam dan pesawat luar angkasa, dikarenakan pemanfaatan bahan nuklir yang dapat dilakukan untuk jangka yang relatif panjang tanpa adanya refueling(penambahan bahan bakar baru selama reaktor beroperasi).

3. Dampak penyalah gunaan Nuklir
Nuklir sangat berguna bagi kehidupan manusia jika dipergunakan dengan tepat. Namun keserakahan manusia untuk saling menaklukkan satu sama lain menyeret penggunaan nukil ke dalam sisi yg kelam. Berikut contoh dampak penyalah gunaan nuklir :

Ledakan Nuklir Terbesar Sepanjang Sejarah



Foto diatas diambil tertanggal 3 Juli 1970 oleh seorang tentara Perancis di sebuah tempat bernama Fangataufa. Code bom ini Canopus, dan memiliki kekuatan ledakan sebesar 914 kt. Bom ini dihasilkan oleh Perancis




Operasi Upshot-Knothole, dilakukan di Nevada Proving Ground antara Maret 17 and Juni 4, 1953, mengetes bom jenis beru yang menggunakan teori fission dan fusion. Rumah dalam gambar terletak 3500 kaki dari pusat ledakan, kameranya sendiri dilindungi lapisan setebah 2 inchi, hanya butuh 2,6 detik saja dari awal bom tersebut meldak sampai ledakannya menghancurkan rumah tersebut




1 Juli 1946, di Pulau Marshall, sebuah ledakan berbentuk jamur/cendawan terjadi di Samudra Pasifik Utara, dan merupakan ledakan pertama dari 2 ledakan dalam operasi Crossroads. Di gambar dapat dilihat beberapa kapal perang yang merupakan milik AL Jerman dan Jepang.




Uji coba bom Bravo merupakan yang terburuk dalam sejarah US karena bencana yang disebabkan oleh radiasinya. Kesalahan tersebut terjadi karena US salah menganalisa keadaan cuaca sehingga terjadi bencana radiasi tersebut.




Bom Trinity adalah ujicoba bom atom pertama yang dilakukan US, tertanggal 16 Juli 1945, yang dilakukan di 35 miles kearah tenggara dari Socorro, New Mexico, yang sekarang bernama White Sands Missile Range. Saudaranya, The Fat Man yang menggunakan konsep dan design serupa, adalah bom yang dijatuhkan di Nagasaki. Kekuatan bom ini "hanya" 20 kiloton dan merupakan bom pertama yang memulai Zaman Atom atau Atomic Age.




Bom BADGER adalah bom berkekuatan 23 kiloton, ditembakkan pada April 18, 1953 di Nevada Test Site, bom ini merupakan bagian dari Operation Upshot-Knothole.




Hiroshima dan Nagasaki yang ditembakkan ke Kerajaan Jepang oleh US atas izin Presiden Harry S. Truman ini merupakan serangan bom atom pertama, bom pertama Little Boy yang ditembakkan tanggal 6 Agustus 1945, hari Senin di Hiroshima, sedangkan bom kedua "The Fat Man" ditembakkan di Nagasaki tanggal 9 Agustus 1945. Dua serangan bom atom inilah yang mengakhiri perlawanan Jepang pada Perang Dunia kedua. total kematian mencapai lebih dari 200.000 jiwa.


4. Penutup
Pengembangan teknologi nuklir bagai pedang bermata dua. Di satu sisi banyak dampak baik yang dapat dimanfaatkan dari teknolgi nuklir, namun di sisi lain penyalahgunaan nuklir malah dapat berdampak bagi terancamnya kelangsungan hidup manusia itu sendiri. mari buka mata, buka telinga, semuanya ini nyata di hadapan kita. Alangkah indahnya hidup bila tanpa bayang-bayang penyalah gunaan nuklir.